Papers by year of publication
Pre-print
- Baker, R. S., Hutt, S., Bosch, N., Ocumpaugh, J., Biswas, G., Paquette, L., Andres, J.M.A., Nasiar, N., & Munshi, A. (2023). Data-Driven Classroom Interviewing: Data Science to Target Qualitative Research. EdArXiv Preprints. https://doi.org/10.35542/osf.io/xsb4a
2023
-
Verstege, S., Zhang, Y., Wierenga, P., Paquette, L., & Diederen, J. (2023). Using Sequential Pattern Mining to Understand How Students Use Guidance While Doing Scientific Calculations. Technology, Knowledge and Learning. https://doi.org/10.1007/s10758-023-09677-3
-
Y. Zhang, Paquette, L., Baker, R.S., Bosch, N., Ocumpaugh, J., & Biswas, G. (2023). How are feelings of difficulty and familiarity linked to learning behaviors and gains in a complex science learning task? European Journal of Psychology of Education, 38(2), 777-800. https://doi.org/10.1007/s10212-022-00616-x
-
Y. Zhang, & Paquette, L. (2023). Sequential pattern mining in educational data: The application context, potential, strengths, and limitations. In Educational Data Science: Essentials, Approaches, and Tendencies: Proactive Education based on Empirical Big Data Evidence (pp. 219-254). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0026-8_6
-
Munshi, A., Biswas, G., Baker, R., Ocumpaugh, J., Hutt, S., & Paquette, L. (2023). Analysing adaptive scaffolds that help students develop self‐regulated learning behaviours. Journal of Computer Assisted Learning, 39(2), 351-368. https://doi.org/10.1111/jcal.12761
-
Zhang, Y., Paquette, L., Pinto, J. D., Liu, Q., & Fan, A. X. (2023). Combining latent profile analysis and programming traces to understand novices’ differences in debugging. Education and Information Technologies, 28(4), 4673-4701. https://doi.org/10.1007/s10639-022-11343-7
-
Zhang, Y., Pinto, J. D., Fan, A. X., & Paquette, L. (2023). Using problem similarity- and order- based weighting to model learner performance in introductory computer science problems. Journal of Educational Data Mining, 15(1), 63-99. https://doi.org/10.5281/zenodo.7646789
-
Liu, Q., & Paquette, L. (2023). Using submission log data to investigate novice programmers’ employment of debugging strategies. In LAK23: 13th International Learning Analytics and Knowledge Conference (pp. 637-643). https://doi.org/10.1145/3576050.3576094
-
Zhang, Y., Paquette, L., Pinto, J. D., & Fan, A. X. (2023). Utilizing programming traces to explore and model the dimensions of novices' code‐writing skill. Computer Applications in Engineering Education. https://doi.org/10.1002/cae.22622
2022
-
Hutt, S., Baker, R. S., Ocumpaugh, J., Munshi, A., Andres, J. M. A. L., Karumbaiah, S., Slater, S., Biswas, G., Paquette, L., Bosch, N., & van Velsen, M. (2022). Quick red fox: an app supporting a new paradigm in qualitative research on AIED for STEM. Artificial Intelligence in STEM Education: The Paradigmatic Shifts in Research, Education, and Technology (pp. 319-332). CRC Press. https://doi.org/10.1201/9781003181187-26
-
Zhang, Y., Paquette, L., Bosch, N., Ocumpaugh, J., Biswas, G., Hutt, S., & Baker, R. S. (2022). The evolution of metacognitive strategy use in an open-ended learning environment: Do prior domain knowledge and motivation play a role?. Contemporary Educational Psychology, 69, 102064. https://doi.org/10.1016/j.cedpsych.2022.102064
2021
-
Ocumpaugh, J., Hutt, S., Andres, J. M. A. L., Baker, R. S., Biswas, G., Bosch, N., Paquette, L., & Munshi, A. (2021). Using qualitative data from targeted interviews to inform rapid AIED development. In Proceedings of the 29th international conference on computers in education (pp. 69-74).
-
Pinto, J. D., Zhang, Y., Paquette, L., & Fan, A. X. (2021). Investigating elements of student persistence in an introductory computer science course. In 5th Educational Data Mining in Computer Science Education (CSEDM) Workshop.
-
Zhang, Y., Paquette, L., Baker, R. S., Ocumpaugh, J., Bosch, N., Biswas, G., & Munshi, A. (2021). Can strategic behaviour facilitate confusion resolution? The interplay between confusion and metacognitive strategies in Betty’s Brain. Journal of Learning Analytics, 8(3), 28-44. https://doi.org/10.18608/jla.2021.7161
-
Bosch, N., & Paquette, L. (2021). What’s Next? Sequence Length and Impossible Loops in State Transition Measurement. Journal of Educational Data Mining, 13(1), 1-23. https://doi.org/10.5281/zenodo.5048423
-
Baker, R. S., Nasiar, N., Ocumpaugh, J. L., Hutt, S., Andres, J. M., Slater, S., Schofield, M., Moore, A., Paquette, L., Munshi, A. & Biswas, G. (2021, June). Affect-targeted interviews for understanding student frustration. In International Conference on Artificial Intelligence in Education (pp. 52-63). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-78292-4_5
-
Bosch, N., Zhang, Y., Paquette, L., Baker, R., Ocumpaugh, J., & Biswas, G. (2021, May). Students’ verbalized metacognition during computerized learning. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-12). https://doi.org/10.1145/3411764.3445809
-
Hutt, S., Ocumpaugh, J., Andres, J. M. A. L., Munshi, A., Bosch, N., Baker, R. S., Zhang, Y., Paquette, L., Slater, S. & Biswas, G. (2021). Who’s stopping you?–Using microanalysis to explore the impact of science anxiety on self-regulated learning operations. In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 43, No. 43). https://escholarship.org/uc/item/36s0d7bv
-
Zhang, Y., & Paquette, L. (2021). Mining sequential patterns with high usage variation. In Proceedings of the 14th Educational Data Mining Conference (pp. 704-707).
-
Hutt, S., Ocumpaugh, J., Ma, J., Andres, A. L., Bosch, N., Paquette, L., Biswas, G., & Baker, R. S. (2021). Investigating SMART Models of Self-Regulation and Their Impact on Learning. In Proceedings of the 14th Educational Data Mining Conference (pp. 580-587).
-
Paquette, L., Grant, T., Zhang, Y., Biswas, G., & Baker, R. (2021). Using epistemic networks to analyze self-regulated learning in an open-ended problem-solving environment. In Advances in Quantitative Ethnography: Second International Conference, ICQE 2020 (pp. 185-201). Springer International Publishing. https://doi.org/10.1007/978-3-030-67788-6_13
2020
-
Paquette, L., Ocumpaugh, J., Li, Z., Andres, A., & Baker, R. (2020). Who’s Learning? Using Demographics in EDM Research. Journal of Educational Data Mining, 12(3), 1-30. https://doi.org/10.5281/zenodo.4143612
-
Haniya, S., & Paquette, L. (2020). Understanding learner participation at scale: How and why. E-Learning and Digital Media, 17(3), 236-252. https://doi.org/10.1177/2042753019900963
-
Zhang, Y., Paquette, L., Baker, R. S., Ocumpaugh, J., Bosch, N., Munshi, A., & Biswas, G. (2020). The relationship between confusion and metacognitive strategies in Betty’s Brain. In Proceedings of the Tenth International Conference on Learning Analytics & Knowledge (pp. 276-284). https://doi.org/10.1145/3375462.3375518
-
Henderson, N., Rowe, J., Paquette, L., Baker, R. S., & Lester, J. (2020). Improving affect detection in game-based learning with multimodal data fusion. In Artificial Intelligence in Education: 21st International Conference, AIED 2020, Ifrane, Morocco, July 6–10, 2020, Proceedings, Part I 21 (pp. 228-239). Springer International Publishing. https://doi.org/10.1007/978-3-030-52237-7_19
-
Munshi, A., Mishra, S., Zhang, N., Paquette, L., Ocumpaugh, J., Baker, R., & Biswas, G. (2020). Modeling the relationships between basic and achievement emotions in computer-based learning environments. In Artificial Intelligence in Education: 21st International Conference, AIED 2020, Ifrane, Morocco, July 6–10, 2020, Proceedings, Part I 21 (pp. 411-422). Springer International Publishing. https://doi.org/10.1007/978-3-030-52237-7_33
-
Zhang, Y., & Paquette, L. (2020). An effect-size-based temporal interestingness metric for sequential pattern mining. In Proceedings of the 13th International Educational Data Mining Conference (pp. 720-724).
-
Li, T. W., & Paquette, L. (2020). Erroneous Answers Categorization for Sketching Questions in Spatial Visualization Training. In Proceedings of the 13th International Educational Data Mining Conference (pp. 148-158).
-
Sanyal, D., Bosch, N., & Paquette, L. (2020). Feature Selection Metrics: Similarities, Differences, and Characteristics of the Selected Models. In Proceedings of the 13th International Educational Data Mining Conference (pp. 212-223).
-
Hur, P., Bosch, N., Paquette, L., & Mercier, E. (2020). Harbingers of Collaboration? The Role of Early-Class Behaviors in Predicting Collaborative Problem Solving. In Proceedings of the 13th International Educational Data Mining Conference (pp. 104-114).
-
Bosch, N., Crues, R., Shaik, N., & Paquette, L. (2020). " Hello,[REDACTED]": Protecting Student Privacy in Analyses of Online Discussion Forums. Grantee Submission. In Proceedings of the 13th International Educational Data Mining Conference (pp. 39-49).
-
Paquette, L., & Bosch, N. (2020). The invisible breadcrumbs of digital learning: how learner actions inform us of their experience. In Handbook of Research on Digital Learning (pp. 302-316). IGI Global. https://doi.org/10.4018/978-1-5225-9304-1.ch019
2019
-
Paquette, L., & Baker, R. S. (2019). Comparing machine learning to knowledge engineering for student behavior modeling: a case study in gaming the system. Interactive Learning Environments, 27(5-6), 585-597. https://doi.org/10.1080/10494820.2019.1610450
-
Andres, J. M. A. L., Ocumpaugh, J., Baker, R. S., Slater, S., Paquette, L., Jiang, Y., … & Biswas, G. (2019, March). Affect sequences and learning in Betty’s Brain. In Proceedings of the 9th international conference on learning analytics & knowledge (pp. 383-390). https://doi.org/10.1145/3303772.3303807
2018
-
Jiang, Y., Clarke-Midura, J., Keller, B., Baker, R. S., Paquette, L., & Ocumpaugh, J. (2018). Note-taking and science inquiry in an open-ended learning environment. Contemporary Educational Psychology, 55, 12-29. https://doi.org/10.1016/j.cedpsych.2018.08.004
-
Munshi, A., Rajendran, R., Ocumpaugh, J., Biswas, G., Baker, R. S., & Paquette, L. (2018, July). Modeling learners' cognitive and affective states to scaffold SRL in open-ended learning environments. In Proceedings of the 26th conference on user modeling, adaptation and personalization (pp. 131-138). https://doi.org/10.1145/3209219.3209241
-
DeFalco, J. A., Rowe, J. P., Paquette, L., Georgoulas-Sherry, V., Brawner, K., Mott, B. W., Baker, R.S., & Lester, J. C. (2018). Detecting and addressing frustration in a serious game for military training. International Journal of Artificial Intelligence in Education, 28, 152-193. https://doi.org/10.1007/s40593-017-0152-1
-
Bosch, N., & Paquette, L. (2018). Metrics for discrete student models: Chance levels, comparisons, and use cases. Journal of Learning Analytics, 5(2), 86-104. https://doi.org/10.18608/jla.2018.52.6
-
Paquette, L., Baker, R. S., & Moskal, M. (2018). A system-general model for the detection of gaming the system behavior in CTAT and LearnSphere. In Artificial Intelligence in Education: 19th International Conference, AIED 2018, London, UK, June 27–30, 2018, Proceedings, Part II 19 (pp. 257-260). Springer International Publishing. https://doi.org/10.1007/978-3-319-93846-2_47
-
Jiang, Y., Bosch, N., Baker, R. S., Paquette, L., Ocumpaugh, J., Andres, J. M. A. L., Moore, A.L., & Biswas, G. (2018). Expert feature-engineering vs. deep neural networks: which is better for sensor-free affect detection?. In Artificial Intelligence in Education: 19th International Conference, AIED 2018, London, UK, June 27–30, 2018, Proceedings, Part I 19 (pp. 198-211). Springer International Publishing. https://doi.org/10.1007/978-3-319-93843-1_15
-
Paquette, L., Bosch, N., Mercier, E., Jung, J., Shehab, S., & Tong, Y. (2018). Matching data-driven models of group interactions to video analysis of collaborative problem solving on tablet computers. International Society of the Learning Sciences, Inc.[ISLS].
-
Jiang, Y., Clarke-Midura, J., Baker, R. S., Paquette, L., & Keller, B. (2018). How immersive virtual environments foster self-regulated learning. In Digital technologies and instructional design for personalized learning (pp. 28-54). IGI Global. https://doi.org/10.4018/978-1-5225-3940-7.ch002
2017
-
Biswas, G., Baker, R. S., & Paquette, L. (2017). Data mining methods for assessing self-regulated learning. In Handbook of self-regulation of learning and performance (pp. 388-403). Routledge. https://psycnet.apa.org/doi/10.4324/9781315697048-25
-
Bosch, N., & Paquette, L. (2017, June). Unsupervised deep autoencoders for feature extraction with educational data. In Deep learning with educational data workshop at the 10th international conference on educational data mining.
-
Kai, S., Andres, J. M. L., Paquette, L., Baker, R. S., Molnar, K., Watkins, H., & Moore, M. (2017). Predicting Student Retention from Behavior in an Online Orientation Course. Proceedings of the 10th International Conference on Educational Data Mining (pp. 250-255).
-
Paquette, L., & Baker, R. S. (2017). Variations of gaming behaviors across populations of students and across learning environments. In Artificial Intelligence in Education: 18th International Conference, AIED 2017, Wuhan, China, June 28–July 1, 2017, Proceedings 18 (pp. 274-286). Springer International Publishing. https://doi.org/10.1007/978-3-319-61425-0_23
-
Ocumpaugh, J., Andres, J. M., Baker, R., DeFalco, J., Paquette, L., Rowe, J., … & Sottilare, R. (2017). Affect dynamics in military trainees using vMedic: From engaged concentration to boredom to confusion. In Artificial Intelligence in Education: 18th International Conference, AIED 2017, Wuhan, China, June 28–July 1, 2017, Proceedings 18 (pp. 238-249). Springer International Publishing. https://doi.org/10.1007/978-3-319-61425-0_20
-
Wang, Y., Baker, R., & Paquette, L. (2017, March). Behavioral predictors of MOOC post-course development. In Proceedings of the Workshop on Integrated Learning Analytics of MOOC Post-Course Development.