Papers by year of publication

2024

  • Fan, A.X., Liu, Q., Paquette, L., & Pinto, J. (2024). Using LLM-Based Filtering to Develop Reliable Coding Schemes for Rare Debugging Strategies. In Proceedings of Advances in Quantitative Ethnography (ICQE 2024) (pp. 136-151). https://doi.org/10.1007/978-3-031-76335-9_10

  • Lawrence, L., Mercier, M., Parks, T.T., Bosch, N., & Paquette, L. (2024). Accuracy and effectiveness of an orchestration tool on instructors’ interventions and groups’ collaboration. Computers and Education Open, 7, 100203. https://doi.org/10.1016/j.caeo.2024.100203

  • Liu, Q., Pinto, J.D., & Paquette, L. (2024). Applications of Explainable AI (XAI) in Education. In Trust and Inclusion in AI-Mediated Education: Where Human Learning Meets Learning Machines (pp. 93-109). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64487-0_5

  • Pinto, J., & Paquette, L. (2024). Deep Learning for Educational Data Science. In Trust and Inclusion in AI-Mediated Education: Where Human Learning Meets Learning Machines (pp. 111-139). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64487-0_6

  • Pinto, J.D., & Paquette, L. (2024). Towards a Unified Framework for Evaluating Explanation. Presented at HEXED Workshop @ EDM 24. https://arxiv.org/abs/2405.14016

  • Pinto, J., Paquette, L., Swamy, V., Käser, T., Liu, Q., & Cohausz (2024). Human-Centric eXplainable AI in Education. In Proceedings of the 17th Educational Data Mining Conference (pp. 1030-1033). https://doi.org/10.5281/zenodo.12730045

  • Verstege, S., Zhang, Y., Wierenga, P., Paquette, L., & Diederen, J. (2023). Using Sequential Pattern Mining to Understand How Students Use Guidance While Doing Scientific Calculations. Technology, Knowledge and Learning, 29(2), 897-920. https://doi.org/10.1007/s10758-023-09677-3

  • Zhang, J., & Paquette, L. (2024). An Exploratory Analysis of Students' Problem-Solving Strategies in the Water Cycle Game. In Proceedings of the 17th Educational Data Mining Conference (pp. 828-834). https://doi.org/10.5281/zenodo.12729964

  • Zhang, Y., Paquette, L., & Bosch, N. (2024). Conditional and Marginal Strengths of Affect Transitions During Computer-Based Learning. International Journal of Artificial Intelligence in Education, 1-29. https://doi.org/10.1007/s40593-024-00430-0

  • Zhang, Y., Paquette, L., & Bosch, N. (2024). Using Permutation Tests to Identify Statistically Sound and Nonredundant Sequential Patterns in Educational Even Sequences. Journal of Educational and Behavioral Statistics. https://doi.org/10.3102/10769986241248772

  • Zhang, Y., Paquette, L., & Hu, X. (2024). Academic procrastination, incentivized and self-selected spaced practice, and quiz performance in an online programming problem system: An intensive longitudinal investigation. Computers & Education. https://doi.org/10.1016/j.compedu.2024.105029

  • Zhang, Y., Ye, Y., Paquette, L., & Hu, X. (2024). Investigating the reliability of aggregate measurements of learning process data: From theory to practice. Journal of Computer Assisted Learning. https://doi.org/10.1111/jcal.12951

  • Zhou, Y., & Paquette, L. (2024). Investigating Student Interest in a Minecraft-Based Learning Environment: A Changepoint Detection Analysis. In Proceedings of the 17th Educational Data Mining Conference (pp. 396-404). https://doi.org/10.5281/zenodo.12729844

2023

  • Baker, R. S., Hutt, S., Bosch, N., Ocumpaugh, J., Biswas, G., Paquette, L., Andres, J.M.A., Nasiar, N., & Munshi, A. (2023). Detector-driven classroom interviewing: focusing qualitative researcher time by selecting cases in situ. Educational Technology Resarch and Development, Special Issue on Methodologies for Research on Educational Technology: Emerging Appraoches. https://doi.org/10.1007/s11423-023-10324-y

  • Fan, A., Zhang, H., Paquette, L., & Zhang, R. (2023). Exploring the Potential of Large Language Models in Generating Code-Tracing Questions for Introductory Programming Courses. Findings of the Association for Computational Linguistics: EMNLP 2023. https://doi.org/10.18653/v1/2023.findings-emnlp.496

  • Liu, Q., & Paquette, L. (2023). Using submission log data to investigate novice programmers’ employment of debugging strategies. In LAK23: 13th International Learning Analytics and Knowledge Conference (pp. 637-643). https://doi.org/10.1145/3576050.3576094

  • Munshi, A., Biswas, G., Baker, R., Ocumpaugh, J., Hutt, S., & Paquette, L. (2023). Analysing adaptive scaffolds that help students develop self‐regulated learning behaviours. Journal of Computer Assisted Learning, 39(2), 351-368. https://doi.org/10.1111/jcal.12761

  • Pinto, J.D., Liu, Q., Paquette, L., Zhang, Y., & Fan, A. (2023). Investigating the Relationship Between Programming Experience and Debugging Behaviors in an Introductory Computer Science Course. ICQE 2023: Advances in Quantitative Ethnography, 125-139. https://doi.org/10.1007/978-3-031-47014-1_9

  • Zhang, Y. & Paquette, L. (2023). Sequential pattern mining in educational data: The application context, potential, strengths, and limitations. In Educational Data Science: Essentials, Approaches, and Tendencies: Proactive Education based on Empirical Big Data Evidence (pp. 219-254). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0026-8_6

  • Zhang, Y., Paquette, L., Pinto, J. D., & Fan, A. X. (2023). Utilizing programming traces to explore and model the dimensions of novices' code‐writing skill. Computer Applications in Engineering Education. https://doi.org/10.1002/cae.22622

  • Zhang, Y., Paquette, L., Pinto, J. D., Liu, Q., & Fan, A. X. (2023). Combining latent profile analysis and programming traces to understand novices’ differences in debugging. Education and Information Technologies, 28(4), 4673-4701. https://doi.org/10.1007/s10639-022-11343-7

  • Zhang, Y., Pinto, J. D., Fan, A. X., & Paquette, L. (2023). Using problem similarity- and order- based weighting to model learner performance in introductory computer science problems. Journal of Educational Data Mining, 15(1), 63-99. https://doi.org/10.5281/zenodo.7646789

  • Zhang, Y. , Paquette, L., Baker, R.S., Bosch, N., Ocumpaugh, J., & Biswas, G. (2023). How are feelings of difficulty and familiarity linked to learning behaviors and gains in a complex science learning task? European Journal of Psychology of Education, 38(2), 777-800. https://doi.org/10.1007/s10212-022-00616-x

2022

  • Hutt, S., Baker, R. S., Ocumpaugh, J., Munshi, A., Andres, J. M. A. L., Karumbaiah, S., Slater, S., Biswas, G., Paquette, L., Bosch, N., & van Velsen, M. (2022). Quick red fox: an app supporting a new paradigm in qualitative research on AIED for STEM. Artificial Intelligence in STEM Education: The Paradigmatic Shifts in Research, Education, and Technology (pp. 319-332). CRC Press. https://doi.org/10.1201/9781003181187-26

  • Zhang, Y., Paquette, L., Bosch, N., Ocumpaugh, J., Biswas, G., Hutt, S., & Baker, R. S. (2022). The evolution of metacognitive strategy use in an open-ended learning environment: Do prior domain knowledge and motivation play a role?. Contemporary Educational Psychology, 69, 102064. https://doi.org/10.1016/j.cedpsych.2022.102064

2021

  • Baker, R. S., Nasiar, N., Ocumpaugh, J. L., Hutt, S., Andres, J. M., Slater, S., Schofield, M., Moore, A., Paquette, L., Munshi, A. & Biswas, G. (2021, June). Affect-targeted interviews for understanding student frustration. In International Conference on Artificial Intelligence in Education (pp. 52-63). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-78292-4_5

  • Bosch, N., & Paquette, L. (2021). What’s Next? Sequence Length and Impossible Loops in State Transition Measurement. Journal of Educational Data Mining, 13(1), 1-23. https://doi.org/10.5281/zenodo.5048423

  • Bosch, N., Zhang, Y., Paquette, L., Baker, R., Ocumpaugh, J., & Biswas, G. (2021, May). Students’ verbalized metacognition during computerized learning. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-12). https://doi.org/10.1145/3411764.3445809

  • Hutt, S., Ocumpaugh, J., Andres, J.M.A.L., Munshi, A., Bosch, N., Baker, R. S., Zhang, Y., Paquette, L., Slater, S. & Biswas, G. (2021). Who’s stopping you?–Using microanalysis to explore the impact of science anxiety on self-regulated learning operations. In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 43, No. 43). https://escholarship.org/uc/item/36s0d7bv

  • Hutt, S., Ocumpaugh, J., Andres, J.M.A.L., Bosch, N., Paquette, L., Biswas, G., & Baker, R. S. (2021). Investigating SMART Models of Self-Regulation and Their Impact on Learning. In Proceedings of the 14th Educational Data Mining Conference (pp. 580-587).

  • Ocumpaugh, J., Hutt, S., Andres, J.M.A.L., Baker, R. S., Biswas, G., Bosch, N., Paquette, L., & Munshi, A. (2021). Using qualitative data from targeted interviews to inform rapid AIED development. In Proceedings of the 29th international conference on computers in education (pp. 69-74).

  • Paquette, L., Grant, T., Zhang, Y., Biswas, G., & Baker, R. (2021). Using epistemic networks to analyze self-regulated learning in an open-ended problem-solving environment. In Advances in Quantitative Ethnography: Second International Conference, ICQE 2020 (pp. 185-201). Springer International Publishing. https://doi.org/10.1007/978-3-030-67788-6_13

  • Pinto, J. D., Zhang, Y., Paquette, L., & Fan, A. X. (2021). Investigating elements of student persistence in an introductory computer science course. In 5th Educational Data Mining in Computer Science Education (CSEDM) Workshop.

  • Zhang, Y., & Paquette, L. (2021). Mining sequential patterns with high usage variation. In Proceedings of the 14th Educational Data Mining Conference (pp. 704-707).

  • Zhang, Y., Paquette, L., Baker, R. S., Ocumpaugh, J., Bosch, N., Biswas, G., & Munshi, A. (2021). Can strategic behaviour facilitate confusion resolution? The interplay between confusion and metacognitive strategies in Betty’s Brain. Journal of Learning Analytics, 8(3), 28-44. https://doi.org/10.18608/jla.2021.7161

2020

  • Bosch, N., Crues, R., Shaik, N., & Paquette, L. (2020). " Hello,[REDACTED]": Protecting Student Privacy in Analyses of Online Discussion Forums. Grantee Submission. In Proceedings of the 13th International Educational Data Mining Conference (pp. 39-49).

  • Haniya, S., & Paquette, L. (2020). Understanding learner participation at scale: How and why. E-Learning and Digital Media, 17(3), 236-252. https://doi.org/10.1177/2042753019900963

  • Henderson, N., Rowe, J., Paquette, L., Baker, R. S., & Lester, J. (2020). Improving affect detection in game-based learning with multimodal data fusion. In Artificial Intelligence in Education: 21st International Conference, AIED 2020, Ifrane, Morocco, July 6–10, 2020, Proceedings, Part I 21 (pp. 228-239). Springer International Publishing. https://doi.org/10.1007/978-3-030-52237-7_19

  • Hur, P., Bosch, N., Paquette, L., & Mercier, E. (2020). Harbingers of Collaboration? The Role of Early-Class Behaviors in Predicting Collaborative Problem Solving. In Proceedings of the 13th International Educational Data Mining Conference (pp. 104-114).

  • Li, T. W., & Paquette, L. (2020). Erroneous Answers Categorization for Sketching Questions in Spatial Visualization Training. In Proceedings of the 13th International Educational Data Mining Conference (pp. 148-158).

  • Munshi, A., Mishra, S., Zhang, N., Paquette, L., Ocumpaugh, J., Baker, R., & Biswas, G. (2020). Modeling the relationships between basic and achievement emotions in computer-based learning environments. In Artificial Intelligence in Education: 21st International Conference, AIED 2020, Ifrane, Morocco, July 6–10, 2020, Proceedings, Part I 21 (pp. 411-422). Springer International Publishing. https://doi.org/10.1007/978-3-030-52237-7_33

  • Paquette, L., & Bosch, N. (2020). The invisible breadcrumbs of digital learning: how learner actions inform us of their experience. In Handbook of Research on Digital Learning (pp. 302-316). IGI Global. https://doi.org/10.4018/978-1-5225-9304-1.ch019

  • Paquette, L., Ocumpaugh, J., Li, Z., Andres, A., & Baker, R. (2020). Who’s Learning? Using Demographics in EDM Research. Journal of Educational Data Mining, 12(3), 1-30. https://doi.org/10.5281/zenodo.4143612

  • Sanyal, D., Bosch, N., & Paquette, L. (2020). Feature Selection Metrics: Similarities, Differences, and Characteristics of the Selected Models. In Proceedings of the 13th International Educational Data Mining Conference (pp. 212-223).

  • Zhang, Y., & Paquette, L. (2020). An effect-size-based temporal interestingness metric for sequential pattern mining. In Proceedings of the 13th International Educational Data Mining Conference (pp. 720-724).

  • Zhang, Y., Paquette, L., Baker, R. S., Ocumpaugh, J., Bosch, N., Munshi, A., & Biswas, G. (2020). The relationship between confusion and metacognitive strategies in Betty’s Brain. In Proceedings of the Tenth International Conference on Learning Analytics & Knowledge (pp. 276-284). https://doi.org/10.1145/3375462.3375518

2019

  • Andres, J. M. A. L., Ocumpaugh, J., Baker, R. S., Slater, S., Paquette, L., Jiang, Y., … & Biswas, G. (2019, March). Affect sequences and learning in Betty’s Brain. In Proceedings of the 9th international conference on learning analytics & knowledge (pp. 383-390). https://doi.org/10.1145/3303772.3303807

  • Paquette, L., & Baker, R. S. (2019). Comparing machine learning to knowledge engineering for student behavior modeling: a case study in gaming the system. Interactive Learning Environments, 27(5-6), 585-597. https://doi.org/10.1080/10494820.2019.1610450

2018

  • Bosch, N., & Paquette, L. (2018). Metrics for discrete student models: Chance levels, comparisons, and use cases. Journal of Learning Analytics, 5(2), 86-104. https://doi.org/10.18608/jla.2018.52.6

  • DeFalco, J. A., Rowe, J. P., Paquette, L., Georgoulas-Sherry, V., Brawner, K., Mott, B. W., Baker, R.S., & Lester, J. C. (2018). Detecting and addressing frustration in a serious game for military training. International Journal of Artificial Intelligence in Education, 28, 152-193. https://doi.org/10.1007/s40593-017-0152-1

  • Jiang, Y., Bosch, N., Baker, R. S., Paquette, L., Ocumpaugh, J., Andres, J. M. A. L., Moore, A.L., & Biswas, G. (2018). Expert feature-engineering vs. deep neural networks: which is better for sensor-free affect detection?. In Artificial Intelligence in Education: 19th International Conference, AIED 2018, London, UK, June 27–30, 2018, Proceedings, Part I 19 (pp. 198-211). Springer International Publishing. https://doi.org/10.1007/978-3-319-93843-1_15

  • Jiang, Y., Clarke-Midura, J., Baker, R. S., Paquette, L., & Keller, B. (2018). How immersive virtual environments foster self-regulated learning. In Digital technologies and instructional design for personalized learning (pp. 28-54). IGI Global. https://doi.org/10.4018/978-1-5225-3940-7.ch002

  • Jiang, Y., Clarke-Midura, J., Keller, B., Baker, R. S., Paquette, L., & Ocumpaugh, J. (2018). Note-taking and science inquiry in an open-ended learning environment. Contemporary Educational Psychology, 55, 12-29. https://doi.org/10.1016/j.cedpsych.2018.08.004

  • Munshi, A., Rajendran, R., Ocumpaugh, J., Biswas, G., Baker, R. S., & Paquette, L. (2018, July). Modeling learners' cognitive and affective states to scaffold SRL in open-ended learning environments. In Proceedings of the 26th conference on user modeling, adaptation and personalization (pp. 131-138). https://doi.org/10.1145/3209219.3209241

  • Paquette, L., Baker, R. S., & Moskal, M. (2018). A system-general model for the detection of gaming the system behavior in CTAT and LearnSphere. In Artificial Intelligence in Education: 19th International Conference, AIED 2018, London, UK, June 27–30, 2018, Proceedings, Part II 19 (pp. 257-260). Springer International Publishing. https://doi.org/10.1007/978-3-319-93846-2_47

  • Paquette, L., Bosch, N., Mercier, E., Jung, J., Shehab, S., & Tong, Y. (2018). Matching data-driven models of group interactions to video analysis of collaborative problem solving on tablet computers. International Society of the Learning Sciences, Inc.[ISLS].

2017

  • Biswas, G., Baker, R. S., & Paquette, L. (2017). Data mining methods for assessing self-regulated learning. In Handbook of self-regulation of learning and performance (pp. 388-403). Routledge. https://psycnet.apa.org/doi/10.4324/9781315697048-25

  • Bosch, N., & Paquette, L. (2017, June). Unsupervised deep autoencoders for feature extraction with educational data. In Deep learning with educational data workshop at the 10th international conference on educational data mining.

  • Kai, S., Andres, J. M. L., Paquette, L., Baker, R. S., Molnar, K., Watkins, H., & Moore, M. (2017). Predicting Student Retention from Behavior in an Online Orientation Course. Proceedings of the 10th International Conference on Educational Data Mining (pp. 250-255).

  • Ocumpaugh, J., Andres, J. M., Baker, R., DeFalco, J., Paquette, L., Rowe, J., … & Sottilare, R. (2017). Affect dynamics in military trainees using vMedic: From engaged concentration to boredom to confusion. In Artificial Intelligence in Education: 18th International Conference, AIED 2017, Wuhan, China, June 28–July 1, 2017, Proceedings 18 (pp. 238-249). Springer International Publishing. https://doi.org/10.1007/978-3-319-61425-0_20

  • Paquette, L., & Baker, R. S. (2017). Variations of gaming behaviors across populations of students and across learning environments. In Artificial Intelligence in Education: 18th International Conference, AIED 2017, Wuhan, China, June 28–July 1, 2017, Proceedings 18 (pp. 274-286). Springer International Publishing. https://doi.org/10.1007/978-3-319-61425-0_23

  • Wang, Y., Baker, R., & Paquette, L. (2017, March). Behavioral predictors of MOOC post-course development. In Proceedings of the Workshop on Integrated Learning Analytics of MOOC Post-Course Development.